

Selected examples of work on mono- and multivalent batteries from POLiS

Maximilian Fichtner

2024-06-04

The Cluster

DFG Cluster of Excellence 2019 – 2025 47 Mio. € 120+ researchers

Together with Cluster 3DMM2O corner stone of KIT's University of Excellence status

Batteries Beyond Lithium

www.postlithiumstorage.de

Post Lithium Storage Cluster of Excellence

Sodium Ion Batteries

Sodium ion batteries may come without critical raw materials

Critical/expensive/toxic raw materials

Sustainable/cheap/abundant raw materials

How the type of battery chemistry/ specific energy enables driving range in EVs POL

Joint Cluster of E.

Sodium ion batteries: electrode materials

Joint Cluster of Excellence of KIT & Ulm University with Associated Partners JLU & ZSW

Electrode materials: elemental content matters

M. Baumann, *et int*. M. Weil, *Adv. Energy Mater*. **2022**,

Low criticality factor for P2-NMMO

Stabilizing a layered cathode material

$NMMO = Na_{0.7}Mn_{0.9}Mg_{0.1}O_2$

Polycrystalline vs. single crystalline materials

 Conventional electrode materials are *polycrystalline* with primary particles of 200-500 nm size fused together to form secondary particles of **10-15 μm**.

Single crystal \rightarrow crystal lattice without any grain boundaries.

Single crystal electrodes show a particle size of ~ 3 μm, with no grain boundaries.

Cycling

Jing Li *et al.*, J. Electrochem. Soc., 2017
Xinming Fan *et al.*, Nano Energy, 2020
Peipei Pang *et al.*, Electrochim. Acta, 2021
Jin Leng *et al.*, Small, 2021

Cathode materials as large single crystals; Preparation of Na_{0.7}Mn_{0.9}Mg_{0.1}O₂

Cathode materials as large single crystals

$NMMO = Na_{0.7}Mn_{0.9}Mg_{0.1}O_2$

Dotted ring SAED pattern confirms polycrystalline nature

Dotted hexagonal SAED pattern confirms single crystal nature

- V. Pamidi, et al. Micron Sized Single Crystal Cathodes for Sodium Ion Batteries, iScience 25 (2022).104205
- V. Pamidi et al., Material with Improved Cycling Stability for Sodium Ion Batteries, ACS Appl. Mater. Interf. (2024) accepted

XRD of products

POL S Post Lithium Storage Cluster of Excellence

Rietveld-refinement: Phase-pure product

Slight shift to lower angles at elevated T

- \rightarrow loss of Na⁺ in the layers
- → increasing the slab distance due to higher repulsion

Post Lithium Storage в А 100 Water treatment - 4h XRD TGA Dried at 80 °C 1.5% 99 Weight (%) Intensity (a.u) NMMO-1100 98 3.2% Water treatment 4h (002) 97 102) (104) 96 **NMMO-900** NMMO-900 * Birnessite NMMO-1100 95 50 300 350 400 450 100 150 200 250 10 15 20 25 30 20 (Mo Ka, Transmission) Temperature (°C) С D 100 Humidity test - 30 days in air 1.1% 99 Weight (%) Intensity (a.u) 98 NMMO-1100 3.2% 30 days in ambient air 97 96 NMMO-900 Birnessite NMMO-1100 **NMMO-900** 95 300 350 400 450 50 100 150 200 250 10 20 25 15 30

20 (Mo Ka, Transmission)

PC and SC materials in contact with moisture

Joint Cluster of Excellence of KIT & Ulm Unive

)LiS| 7 June 2024 14

Temperature (°C)

 $NMMO = Na_{0.7}Mn_{0.9}Mg_{0.1}O_2$ Α в 5.0 250 NMMO:PVDF:C (8:1:1), C/10 NMMO:PVDF:C (8:1:1) 4.5 4.5-1.5 V Discharge capacity (mAh/g) 200 0.1C Voltage (V vs. Na⁺) 4.0 0.1C 0.2C 3.5 50 900 1000 3.0 1050 1C 100 1100 2.5 2C -900 1150 1000 5C 2.0 1050 50 1100 1.5 -1150 1.0 -200 50 100 150 250 140 120 0 20 40 60 80 100 Specific capacity (mAh/g) Cycle number

- 4.5–1.5 V at a current rate of C/10.
- second charge/discharge

- V. Pamidi, et al. Micron Sized Single Crystal Cathodes for Sodium Ion Batteries, iScience 25 (2022).104205
- V. Pamidi et al., Material with Improved Cycling Stability for Sodium Ion Batteries, ACS Appl. Mater. Interf. (2024) accepted

Electrochemical properties of NMMO-900 and NMMO-1100

Summary

Property	Polycrystalline	Single crystal
Air stability	\otimes	\odot
Cycling stability	$\overline{\mathbf{S}}$	\odot
Rate capability	\odot	$\overline{\otimes}$
High voltage stability	$\overline{\otimes}$	\odot
Thermal Stability	$\overline{\otimes}$	\odot
Mechanical Integrity	\otimes	\odot

Multifunctional inorganic aqueous binders

Multifunctional aqueous binders for sodium ion batteries

SHMP

SMS

- S. Trivedi, V. Pamidi, M. Fichtner, M. Anji Reddy Green Chemistry 24, **2022**, 5620
- R. Xu et al., Greener, Safer and Better Performing Aqueous Binder for Positive Electrode Manufacturing of Sodium Ion Batteries, ChemSusChem, **2024**, e202301154

Ionic conductivity of inorganic binders (phosphates/silicates)

Binding ability **plus** ionic conductivity

Multifunctional aqueous binders / thermal properties

DSC in air

Multifunctional aqueous binders / mechanical properties

NMO:PVDF:C @ 400°C/2h

NMO:STMP:C @ 600°C/2h

NMO:SPP:C (8:1:1)

Flexible

Rollable

Binding strength /peel test experiments

Multifunctional aqueous binders for sodium ion batteries

 $NMMO = Na_{0.7}Mn_{0.9}Mg_{0.1}O_2$

NVP = $Na_3V_2(PO_4)_3$

Binder	Cap Retent (%)
SPP	96
STMP	94
SHMP	97
SMS	95
STMP:SPP	96
PVDF	95

Cycle number

Binder	Cap Retent (%)	
STMP:SPP (1:1)	~69	2
SHMP	~87	
STMP	~61	
SPP	~66	
SMS	~74	
PVDF	~59	

28% improvement after 150 cycles

Na 1 M NaClO₄/(98%)PC/(2%)FEC NMO,NVP; Swagelok cell

Technology Transfer and Spin-Off

Spin-Off Company for SIB materials

"Litona stands for high-quality, environmentally friendly and yet affordable energy storage."

Litona

Scale-up of PBA materials and distribution https://www.litona-batteries.de/

Multivalent Batteries

Aluminum

Calcium

High-capacity aluminum-organic battery

- **X-PVMPT** as positive electrode material in Al-based batteries (Cross-linked poly(3-vinyl-*N*-methylphenothiazine)
- Reversibly inserts $[AlCl_4]^-$ ions at potentials of 0.81 and 1.65 V vs. Al $|Al^{3+}$
- Specific capacities of up to 167 mAh g⁻¹ \rightarrow higher than graphite as positive electrode material
- 5,000 cycles at a 10 C rate: 88% capacity retention

Calcium batteries

Development of Ca electrolytes

POL S Post Lithium Storage Cluster of Excellence

Ca metal is highly reactive

Ca electrolytes

Ca(BF₄)₂/EC-PC

- Plating/stripping at >75 °C.
- Oxi. stability 4 V
- Low deposition efficiency
- Surface layer CaF₂, CaCO₃, etc

A. Ponrouch, R. Palacin et al, *Nat. Mater.* (2016)*15,169*

Ca(BH₄)₂/THF

- Plating/stripping **at r.t.**
- Deposition efficiency ~95%
- Oxi. stability <3 V
- Surface layer CaH₂, reactive

Wang, D.; Gao, X.; Bruce, P. G. *et al, Nat. Mater.* (2018) *17,16*.

A first room-temperature Ca electrolyte with viable

properties Ca-salt with weakly coordinating anions

Fluorinated anion:

- delocalized charge, weak interaction
- high ion mobility
- High stability
- wide electrochemical window

 $Ca(BH_4)_2 + 8(CF_3)_2CHOH \rightarrow Ca[B(OCH(CF_3)_2)_4]_2 + 4H_2\uparrow$

solvent: 1,2-dimethoxyethane (DME)

- Easy and quantitative synthesis \checkmark
- Reversible Ca plating/stripping at RT
- Electrochemical stability (~4 V) \checkmark
- ✓ Ionic conductivity > 8 mS cm⁻¹
- Compatible with sulfur cathodes
 - Z. Li, M. Fichtner, Z. Zhao-Karger, *Energy Environ. Sci.*, **2019**, *12*, 3496.

Joint Cluster of Excellence of KIT & Ulm University with Associated Partners JLU & ZSW

30

The anode problem

- Ca is reactive and gets easily passivated
- rollover after short cycling period of several 10 cycles only

Development of Ca-Sn alloy bulk anodes

Joint Cluster of Excellence of KIT & Ulm University with Associated Partners JLU & ZSW

Full cells with Ca-Sn alloy anodes

Organic materials:

- Flexible structure
- Fast ion diffusion kinetics
- Tunable properties \checkmark
- Large-scale production
- Low electronic conductivity
- Low volumetric energy * density

Mg || Mg[B(hfip)_4]_2 ||14PAQ 1000 cycles, ~60% capacity retention

Y.Xiu, M.Fichtner, Z.Zhao-Karger et al. Batteries & Supercaps. 2021, 4, 1850 © POLiS | 7 June 2024

Theor. capacity ~260 mAh g⁻¹

Full cells with Ca and Ca-Sn alloy anodes

A π-conjugated Porphyrin Complex as Cathode Material for Fast and Stable **Energy Storage in Calcium Batteries**

CuTPyP

140

120

A π -conjugated Porphyrin Complex as Cathode Material Allows Fast and Stable Energy Storage in Calcium Batteries, submitted (2024)

CycleNumber

60

80

100

20

0

Ω

20

40

Summary

- ✓ Better stability of layered cathode materials for Na-ion batteries
- ✓ Inorganic Na-conducting binders
- ✓ First TERS studies of SIB-SEI on hard carbon
- ✓ Spin-off for SIB materials
- $\checkmark\,$ Long-lasting Al batteries with organic cathode
- ✓ First RT electrolyte for calcium batteries
- \checkmark Ca battery with maximum stability
- ✓ Fastest Mg battery

✓ ...

- ✓ High capacity Mg battery
- ✓ First solid electrolyte for chloride ion batteries
- Internationally unique Materials Acceleration Platform (MAP) with autonomous, Al-controlled robotics

THANK YOU !

(What are highlights and) why do we need them?

- It is a central goal of the cluster to create impact
- Facile Communication; demonstration of scientific/technical progress
- Reputation: creation of followers
- Justification of a huge coordinated effort vs. funding organization