

Commercial Sodium-Ion Cells Characterization & Modeling

SIMBA Final event

07.06.2024 Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer

Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

RWITHAACH UNIVERS

Center for Ageing, Reliability and Lifetime Prediction for Electrochemical and **Electronics systems – Supporting battery applications and battery production**

- State government and Federal government invest about 110 Million Euros for building this center in Aachen
- 5000 m² of net area for laboratories and offices

Prof. Martin Winter JULICH ____

Prof. Christoph Broeckmann RWTHARE

JÜLICH

Prof. Dirk Uwe Sauer

RWTH AS

Prof. Rik W. De Doncker SIZA E RWTH

Prof. Egbert Figgemeier STEN - RWITH VOE

Prof. Joachim Mayer

GFE

 Interdisciplinary team from chemistry, physics, mathematics, material science, electrical and mechanical engineering

2 07.06.2024 | Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Institute for Power Electronics and Electrical Drives

- Univ.-Prof. Dr. ir. Dr. h. c. Rik De Doncker
 - Chair for Power Electronics and Electrical Drives

 Univ.-Prof. Dr. rer. nat. Dirk Uwe Sauer
 Chair for Electrochemical Energy Conversion and Storage Systems

Univ.-Prof. Dr. rer. nat. Egbert Figgemeier
 Chair for Ageing and Lifetime Prediction of Batteries

Enabling improvements at every scale for different industries

4 07.06.2024 | Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

From Cell to System Overview of the Storage Competences of ESS

Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems

Agenda

Sodium-Ion cell	Overview of commercial cells		
Electrochemical characterization	Cell specificationMaterial analysis		
Performance tests	 Electrochemical impedance spectroscopy Cycling test & fast charging Self discharge & calendaric tests 		
Physio-chemical modeling	 Parametrization Modeling Validation 		

RNTHAAC

UNIVERSIT

Motivation

Sodium-ion cells as an alternative battery technology

Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems

Materials for Sodium-Ion cells

Anode

- Hard carbon
- Prussian blue analogues
- Alloys as next-gen
 - Silicon
 - o Zinn

Cathode

- Polyanionic materials (z.B. NVPF)
- Prussian blue analogues
- Layered oxides

Electrolyte

- linear + cyclic carbonates with NaPF6
 - o Lower solvation energy and utilisation of propylene carbonate improves low-temperature performance
- Utilisation of aqueous electrolyte solutions in theory possible

Current collector

- Aluminium or copper for anodes
 - → Aluminium = reduced costs, copper = reduced impedance, high energy density
- Aluminium for cathodes

Cathode materials for different properties

CARL Electrochemical and Pow Electronic Systems

Safety

10 07.06.2024 | Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

RWTHAACHEN UNIVERSITY

Method overview 1.2 Ah 18650 cell made by Shenzhen Mushang Electronics

Agenda

Sodium-Ion Batteries	Overview of commercial cells	
Electrochemical characterization	Cell specificationMaterial analysis	
Performance tests	 Electrochemical impedance spectroscopy Cycling test & fast charging Self discharge & calendaric tests 	
Physio-chemical modelling	 Parametrization Modelling Validation 	

Cell specification 1.2 Ah 18650 cell made by Shenzhen Mushang Electronics

Cell specification	
Nominal capacity	1.2 Ah
Nominal voltage	3.0 V
Voltage limits	1.5–3.8 V
Continuous current limits	charge 0.6 A (0.5C) at 0°C–10°C charge 1.2 A (1C) at 10°C–20°C charge 3.6 A (3C) at 15°C–25°C charge 6.0 A (5C) at 20°C–45°C discharge 9.6 A (8C) at 10°C– 50°C
Weight	$37 \text{ g} \cong 97.30 \text{ Wh/kg}$
Internal resistance	≤ 25 mΩ (1 kHz at 50% SoC)
Power density	810 W/kg

Postive electrode	
Layered oxide	Na _{0.96} Ca _{0.02} [Mn _{1/3} Fe _{1/3} Ni _{1/3}]O ₂
Thickness	55 - 56 µm
Porosity	29.9%
Current collector	17 µm aluminum

Negative electrode	
Hard carbon	
Thickness	76 µm
Porosity	31.4%
Current collector	6 µm copper

14 07.06.2024 | Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Electrolyte Parameterization

- Centrifuge extraction of electrolyte
- ICP-OES: average measured concentration
 - □ Sodium: 1.42 mol/l
 - □ Phosphorus: 1.83 mol/l
 - □ NaPF₆ as conducting salt
- Ionic conductivity
 - □ 9.8 mS/cm
- GC-MS:
 - Dimethyl carbonate (DMC)
 - Ethyl-methyl carbonate (EMC)
 - Ethyl propionate (EP)
 - Ethylene carbonate (EC)
 - Propylene carbonate (PC)

Agenda

Sodium-Ion Batteries	Overview of commercial cells
Electrochemical characterization	Cell specificationMaterial analysis
Performance tests	 Electrochemical impedance spectroscopy Cycling test & fast charging Self discharge & calendaric tests
Physio-chemical	ParametrizationModeling

RNTHAA

UNIVERSIT

Cell performance - Electrochemical impedance spectroscopy

- Cell quality inhomogeneous
 - 1. Voltage at 3.0 V at delivery
 - 2. Self discharge: < 2.5 V
 - 3. Strong self discharge: < 2.0 V
- Strong SOC-dependency on impedance
 High impedance at low SOC
- Similar to all layered oxide cells
 Topband, HiNA, Hakadi

Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems

Cell performance

High hysterises in low voltage range
 Hard carbon anode

- High capacity at high current rates
 98.12% at 5C compared to 1C
- Differential voltage analysis at 5C possible
- High power cell

Cell performance - Balancing

- Anode and cathode half cells
 - Both materials show only one significant voltage change
 - Fitting strongly influenced by overvoltage due to sodium metal

07.06.2024 | Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer

Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Initial capacity loss of cathode

19

Anode determines the lower voltage

$\text{RMSE} \rightarrow 5.4 \text{ mV}$

Influence of fast charging on lifetime

Limited fast-charging capability of Lithium-Ion cells

High-performance Li-ion cells expensive

20 07.06.2024 | Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Testprotocolls

□ 3C8C:

- Charging: 3C
- Discharging: 8C
- High capacity rentention
 - □ a) C/2 discharge capacity
 - □ b) C/20 discharge capacity
- Still 100% capacity compared to nominal capacity for C20
- Cell temperature

□ 47°C – 52°C (3C8C)

□ $55^{\circ}C - 60^{\circ}C$ (5C8C) \rightarrow all cells failed

Cell aging - Fast charging

No strong influence of charge rate on capacity loss

22 07.06.2024 | Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Cell aging - Self discharge

- Voltage hold at cell voltage
 Self discharge
- Activation energy:
 92 ± 5 kJ/mol
- Strong increase at 55 °C
 → Instability

CARL Center for Ageing, Reliability and Lifetime Prediction of Electronic Systems

Self discharge - high temperatures

From Laufen et al. *Multi-method Characterization of a Commercial 1.2 Ah Sodium-Ion Battery Cell Indicates Drop-in Potential.* Accepted Paper. Cell Reports Physical Science 2024.

Conclusion 1.2 Ah 18650 cell made by Shenzhen Mushang Electronics

- High power cell
 - □ Stable capacity retention
- Instability at high temperature
 - □ Na-Plating
 - Cathode instability
 - \square Gassing \rightarrow cell failure
 - Temperature sensitive cell
- How can we better understand the battery behaviour?
 Physio-chemical modeling

Agenda

Sodium-Ion Batteries	Overview of commercial cells
Electrochemical characterization	Cell specificationMaterial analysis
Performance tests	 EIS Cycling tests Calendaric tests
Physio-chemical modeling	 Parametrization Modeling Validation

Physio-chemical model

Features of the PCM

3D-capable DFN P2D type physico-chemical battery model (PCM)

Coded in C++, realtime-capable and can be built to .exe for deployment

All inputs presented in .yml files or via CLI, outputs generated for Matlab and as .csv

Covers double-layer effects and capable of EIS simulation with internal profiles

Doyle-Fuller-Newman Mode

Anode

28 07.06.2024 | Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Methods for Parameterization

Parameterization

29 07.06.2024 | Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Cell and Geometry Parameterization

		Cell Specs			
	Capacity	1.2 Ah @0.5C & 25 °C	Flatbed	h ⁺	57.5 mm
	Voltage limits	1.5 V to 3.8 V	scanner		
the state	Nominal voltage	3.0 V		h^-	
	Grav. Energy density	97 Wh/kg	-E		1.388 m
	Max. charge			w	
	current			w ⁻	
	Max. discharge	9.6 A (8C) @10 – 50 °C			
	d_{coat} 76 – 78 µn d_{coat}^+ 55 – 56 µn	SEM	76 µm	Laufan et al. https://dx.doi.	55 µm
Micrometer	^u sep		ļ.	Poster P2-074 Schütte et a	<u>51g/10.2139/55m.4542213</u> II.

07.06.2024 | Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer 30 Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power CARL Electrochemical and Electronic Systems

Cell and Geometry Parameterization

Laufen et al. <u>https://dx.doi.org/10.2139/ssrn.4542213</u> Poster P2-074 Schütte et al.

31 07.06.2024 | Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Laufen et al. https://dx.doi.org/10.2139/ssrn.4542213 | Poster P2-074 Schütte et al.

Active Materials Parameterization – Micro- and Nano-CT

07.06.2024 | Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

34 07.06.2024 | Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

qOCV Fitting Parameterization

Center for Ageing, Reliabili and Lifetime Prediction of Electrochemical and Power Electronic Systems

Overview Parameter

Parameterization

36 07.06.2024 | Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL) Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power

Simulation Profile Validation

Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems

Simulation with optimized Validation

38 07.06.2024 | Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer
 Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

CARLE Center for Ageing, Reliability and Lifetime Prediction of Electronic Systems

CARL Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems

Merged Interval Optimization Validation

ARL Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems First parameterization of SIB with Na_{0.96}Ca_{0.02}Mn_{1/3}Fe_{1/3}Ni_{1/3}O₂ and hard carbon shows promising simulation results – established PCMs can be used for sodium-ion

Established methods for cell parameterization of lithium-ion batteries can be transferred to sodium-ion cells

Merged interval optimization shows better RMSE Should be used instead of overall RMSE

41 07.06.2024 | Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Thank you for your attention

Contact

Gereon Stahl Tel.: +49 241 80-96979 Gereon.stahl@isea.rwth-aachen.de batteries@isea.rwth-aachen.de

Chair for Electrochemical Energy Conversion and Storage Systems Univ.-Prof. Dr. rer. nat. Dirk Uwe Sauer RWTH Aachen University

Campus-Boulevard 89 52074 Aachen GERMANY

www.isea.rwth-aachen.de

We thank

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Commercial Sodium-Ion Cells Characterization & Modeling

SIMBA Final event

07.06.2024 Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer

Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL) Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems

Data sheet: commercial cells

Format	18650	26700	26700	33140	Prismatisch	18650 HP
Nominal capacity in Ah Perform	ance strongly	₂ / temperature d	ependet: max.	10	220	1,2
Charge vo current rate only allowed at mild temperatures (10- 35°C)			,9	3,95	3,8	
Discharge voltage in V		1,0	1,0	1,5	1,5	1,5
Max. current (Charge/Discharge)	1C/3C	1C/3C	1C/3C	1C/3C	1C/3C	5C/8C
Energy density (grav. vol.)	128 Wh/kg 268 Wh/l	109 Wh/kg 233 Wh/l	127 Wh/kg 271 Wh/l	110 Wh/kg 250 Wh/l	155 Wh/kg 271 Wh/l	97 Wh/kg 217 Wh/l
Price (for academia)			1,9 \$		75\$	1,1 \$
Price/kWh			186 \$/kWh		110 \$/kWh	306 \$/kWh
Nominal voltage	3,1 V	3,05 V	3,1 V	3	3,1 V	3 V
Resistance	<20 mΩ	<20 mΩ	<20 mΩ	<5 mΩ	<0,5 mΩ	<25 mΩ

44 07.06.2024 | Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Motivation Bridging the Gap between Battery Design and Application Demands

45 07.06.2024 | Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Motivation Bridging the Gap between Battery Design and Application Demands

46 07.06.2024 | Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL) CARRL Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems

Motivation Bridging the Gap between Battery Design and Application Demands

47 07.06.2024 | Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL) CARRL Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems

ISEA DI FRAME

48 07.06.2024 | Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Motivation of the ICPD Overview

Extensive models and data about different battery cells, modules and packs are needed to evaluate them in the context of a wide variety of applications. The ICPD combines the approach of a data base and the linking of analysis and design of battery systems.

Material database

- All components of a battery
 - Active material
 - Conductive additive

□

- Calculation of electrical, physical and chemical parameters of the materials
- Bottom-up cell, module and pack creation

Performance Analysis

- Consideration of cellspecific properties
 - Energy, power, inner resistance
 - Gravimetric and volumetric energy and power density
- Simulation of the Cells with ECM- and physical-chemical simulations (via SBMT)
- Aging and thermal simulation based on load profiles

Cost and LCA

- Cost calculation of cells, modules and packs
- Life cycle assessment for a given field of application
- Evaluation of the battery system for given application

Requirements for modern battery systems

ICPD as an integral tool:

- Cost, performance, sustainability and life span analysis in one tool
- Intelligent algorithm for an optimized battery cell design
- Guided and algorithm based cell and module modelling/design
- Analysis of the battery cell, module and pack in different applications
- Application depending TCO and LCC analysis

ICPD Investigation of State-of-the-Art and Novel Technologies

ISEA cell and pack designer

Analysis options

ISEA cell and pack designer

Cell creation process – Bottom-Up

- Step-by-step cell creation
- Determination of cell and component-specific electrical, physical and geometric properties via advanced algorithms (e.g. energy, OCV)
- Different cell creation methodologies: Fit to housing, fit cell to capacity and no change of components (standard)

ISEA cell and pack designer Investigation of the created cell

54 07.06.2024 | Gereon Stahl, Moritz Schütte, Hendrik Laufen, Dirk Uwe Sauer Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL) Center for Ageing, Reliabilit and Lifetime Prediction of Electrochemical and Power Electronic Systems

ISEA Cell & Pack designer

Module modelling

Module modelling

- Modelling of the cell connectors, busbars, compression pads, glue or cell holders and module housing
- Automatic interconnection and placing of all related objects
- Algorithm fits cell connector and busbar thickness to max. current
- Calculation of all electrical and physical properties of the module (inner resistance, densities etc.)
- Export of the module as CAD-File (.3mf) or (.stl) → Post-processing with CAD program possible
- True-to-scale size comparison between modelled modules possible
- Detailed thermal model of the module

