

EUROPEAN COMMISSION

HORIZON 2020 PROGRAMME - TOPIC H2020-LC-BAT-2020 Sodium-Ion and sodium Metal BAtteries for efficient and sustainable next-generation energy storage

GRANT AGREEMENT No. 963542

SIMBA – Deliverable Report

<< D3.5 – Selective NMR data and structural information for the new Na-containing materials >>

Deliverable No.	SIMBA D3.5	
Related WP	WP3	
Deliverable Title	Selective NMR data and structural information for the new Na-containing materials	
Deliverable Date	2022-12-28	
Deliverable Type	REPORT	
Dissemination level	Confidential – member only (CO)	
Written By	Torsten Gutmann (TUDa) and Edina Sic (TUDa)	2022-12-01
Checked by	Ying Zhan (TUDa)	2022-12-02
Reviewed by (if applicable)	Piter Miedema (UNR) and Matilda Folkenant (Altris)	2022-12-12
Approved by	Prof. Ralf Riedel (TUDa)	2022-12-13
Status	Final	2022-12-14

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 963542.

Publishable summary

The identification of structure moieties in components (electrodes, electrolytes, etc.) of sodium/sodium ion battery systems is a challenging task due to the high degree of disorder in the materials that require appropriate analytical techniques allowing the detection of local structures. Solid-state NMR spectroscopy has been identified as a powerful tool to address this quest. While ²³Na in-situ solid-state NMR of sodium/sodium ion cells, evaluated already in deliverable D3.2, allows to monitor structural changes in cells during galvanostatic cycling processes and gives an overall picture on what happens structurally in a cell during charging and discharging, in many cases it suffers from its low resolution. To overcome this issue an analysis of the single components (electrodes, electrolytes, etc.) of the sodium/sodium ion cell is required that can be done by high spinning high resolution ²³Na ex-situ MAS NMR. Moreover, to support the interpretation of NMR data in terms of structure moieties, quantum chemical calculations are mandatory that can be done at the DFT level of theory on model compounds mimicking the suggested structure moieties.

The successful preparation of an electrochemical cell containing Na|NaPF₆|SiCN for solid-state NMR studies is presented. The obtained ²³Na in-situ NMR spectra allow to inspect structural changes in the overall cell system. Following disassembling of the cell and analysis of local structure occurring in SiCN electrode materials by ²³Na ex-situ MAS NMR delivers insights into the sodium storage process in this cell.

Finally, a combined experimental/theoretical approach is presented that allows a more detailed analysis of carbon and silicon-containing sites in SiCO ceramics which in the future can be transferred also to sodium-containing sites in electrode materials.